Purpose of This Presentation

- Topic Overview
- Fill some gaps
- Real life examples
Topic Overview

• Where to store data
 – Local Drive, Network Drive, Cloud
 – Consider: Capacity & Access by co-workers

• Data backup
 – Disaster Recovery (Business Continuity)
 – Long Term Backup (Archiving)

• Data security
 – Corruption or Loss (hardware failure or data deletion)
 – Confidentiality (personal or intellectual property)
Digression on Two Issues

• Two issues which are often overlooked but are worth highlighting are
 – Usernames and passwords: they are so common users often forget they are still a key part of security on most systems
 – Public WiFi hotspots: safe or not?
Usernames and Passwords

- If possible NEVER use your username as your e-mail address e.g. fbloggs27@staffmail.ed.ac.uk…
 - …always use an alias e.g.: Fred.Bloggs@ed.ac.uk
 - with a valid username, the bad guys only have to guess your password

- Do not write passwords on Post-Its/say them out loud
- Do not use untrusted computers (e.g. internet café)
- Do not use the obvious (car reg., phone no., pet’s name)
- Do not use any dictionary words (including foreign)
Public WiFi

• Do not be afraid of WiFi hot spots
 – Just be careful
 – Treat them as untrusted computers…
 – …unless you use a VPN* connection.

* A Virtual Private Network link provides end-to-end encryption between your laptop and the system you are connecting to.
Example 1 – Who Needs Passwords?

• “I don’t need a good (or any) password because…”:
 – “I have no important/private information in my data area”
 – “I don’t care if someone else can read my files”

• Any authorised access is a first step for the bad guys
 – And they may just delete all your work
 – Or worse, change your data which you may not notice

• Though you have no sensitive files, you may have access to parts of the system which DO

• A security hole within the system may be exploited once the bad guys have gained access by legitimate means
Example 2 – Backup for How Long?

- Researcher has accumulated several years of data and software on a departmental computer backed up remotely every day
- Researcher leaves for another job
- Replacement not found for 6 months
- Replacement tries to log on to computer to find the hard disk had failed 5 months previously
- Asks for a backup to be restored to a new disk, but discovers that backup tapes are recycled after 4 months
- Result – misery!
Example 3 – Sharing Personal Data

• Share a database between 3 sites
 – Data are clinical in nature, mostly images
 – User uses a database program specially written
 – User assures Sysadmin that all data in database are encrypted

• Solution:
 – Place database in DMZ (Demilitarised Zone) with very tight firewall restrictions
 – Only specific workstations at the 3 sites can connect to the database server
 – Connection to server requires username/password
 – As does access to database itself and to decrypt the data
Example 3 – [continued]

• Problem – user had not checked how the database worked
 – Sysadmin asked the right questions…
 – …but trusted the user’s answers
 – The database contents were encrypted but…
 – The database contained only pointers to the images
 – The images were stored as plain files, unencrypted, in a folder/directory outside the database!
 – And to make matters worse, the user decided to keep all their clinic appointment and follow up letters in the same directory – these were Word documents (not even password protected!!)

• Result – a close shave!
 – Good example of defensive, multi-level security
Example 4 – Where’s the Metadata?

• PI needs data generated by a post-doc 3 years previously – data are on backup/archive tapes
 – PI knows the directory/filenames and dates
 – Data files are restored from tape
 – Data files are DNA sequences with no annotations and no metadata files
 – PI cannot find lab notebook of post-doc
 – Post-doc’s memory does not persist for 3 years

• Result – misery!
Thank You

Questions?

Alastair.Brown@igmm.ed.ac.uk